近年来CRISPR技术(Clustered regularly interspaced short palindromic repeats)被广泛应用于各种生物的基因组编辑。然而,如果将CRISPR技术用于基因治疗或生物定向改造,需要对突变位点的精准识别,不能出现意外的随机插入或者缺失。美国哈佛大学David R. Liu课题组发表在《Nature》的” Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage”论文创新性的开发了基于CRISPR/Cas9的单碱基编辑器(base editor, BE),有望为上述问题提供新的思路。
DNA碱基编辑器分为嘧啶碱基编辑器(cytosine base editors, CBEs)和嘌呤碱基编辑器(adenine base editors, ABEs)两种类型,分别适用于C/G到T/A和A/T到G/C的碱基对转变。CBEs 和 ABEs工作原理如图2所示,DNA碱基编辑器是向活细胞中引入永久性DNA点突变的有效工具。
2020年10月19日,加州大学欧文分校的研究人员在 Nature子刊 Nature Biomedical Engineering 杂志发表了题为:Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing 的研究论文[9]。该研究使用慢病毒载体递送腺嘌呤单碱基编辑器(ABE),实现了对先天性黑蒙症小鼠模型突变基因的高效修复,有效恢复了小鼠模型视觉能力,且未发现可检测的脱靶效应。这项工作表明,单碱基编辑技术在某些情况下可能会替代基因增强疗法,以永久挽救因突变而失能的关键蛋白的功能,或修正无法使用基因增强疗法的显性遗传病。这项工作也代表了治疗遗传性视网膜疾病的新方向。
2020年10月19日,加州大学欧文分校的研究人员在 Nature子刊 Nature Biomedical Engineering 杂志发表了题为:Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing 的研究论文[9]。该研究使用慢病毒载体递送腺嘌呤单碱基编辑器(ABE),实现了对先天性黑蒙症小鼠模型突变基因的高效修复,有效恢复了小鼠模型视觉能力,且未发现可检测的脱靶效应。这项工作表明,单碱基编辑技术在某些情况下可能会替代基因增强疗法,以永久挽救因突变而失能的关键蛋白的功能,或修正无法使用基因增强疗法的显性遗传病。这项工作也代表了治疗遗传性视网膜疾病的新方向。
Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, D862–D868 (2016)
罗舒蕾. 单碱基编辑技术的研究进展[J]. 当代化工研究, 2020(5).
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
Montiel-Gonźalez, M. F., Vallecillo-Viejo, I. C. & Rosenthal, J. J. C. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157 (2016).
Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).
Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).
Abudayyeh, O. O. et al. A cytosine deaminase for programmable single-base RNA editing. Science 365, 382–386 (2019).
Suh, S., Choi, E.H., Leinonen, H. et al. Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng (2020).
Porto, E.M., Komor, A.C., Slaymaker, I.M. et al. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov (2020).
Porto, E.M., Komor, A.C., Slaymaker, I.M. et al. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov (2020).
Porto, E.M., Komor, A.C., Slaymaker, I.M. et al. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov (2020).
KIM K, RYU S M, KIM S T, et al. Highly efficient RNA-guided base editing in mouse embryos[J]. Nature Biotechnology,2017, 35 (5) : :435-437.
LIANG P, SUN H, SUN Y, et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes [J]. Protein & cell, 2017, DOI: 10. 1007 /s13238-017-0418-2
ZONG Y, WANG Y, LI C, et al. Precise base editing in rice,wheat and maize with a Cas9-cytidine deaminase fusion [J]. Nature Biotechnology, 2017, 35 (5): 438-440.
LU Y M, ZHU J K. Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System [J]. Molecular plant, 2017,10 (3): 523-525.
LI J, SUN Y, DU J, et al. Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System [J]. Molecular plant, 2017, 10 ( 3) : 526-529.
刘佳慧, 梁普平, 时光, et al. 单碱基基因编辑系统的研究进展 [J]. 世界科技研究与发展, 2017, 039(006):457-462.