至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.
文献搜索
Human VE-Cadherin Fusion Protein as an Artificial Extracellular Matrix Enhancing the Proliferation and Differentiation Functions of Endothelial Cell.
Biomacromolecules..2016-03;
Xu K, Shuai Q, Li X, Zhang Y, Gao C, Cao L, Hu F, Akaike T, Wang JX, Gu Z, Yang J.
Products/Services Used
Details
Operation
... collected and used for purification, with target proteins captured on a Protein A CIP 5 9 ml column (GenScript, Cat.No.L00433), followed by a second SEC purification step. 10 ... sample, with primary goat anti-human IgG-HRP utilized (GenScript, Cat. No. 12 A00166). 13 14 ...
摘要
In an attempt to enhance endothelial cell capture and promote the vascularization of engineered tissue, we biosynthesized and characterized the recombinant fusion protein consisting of human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) to serve as a bioartificial extracellular matrix. The hVE-cad-Fc protein naturally formed homodimers and was used to construct hVE-cad-Fc matrix by stably adsorbing on polystyrene plates. Atomic force microscop assay showed uniform hVE-cad-Fc distribution with nanorod topography. The hVE-cad-Fc matrix markedly promoted human umbilical vein endothelial cells (HUVECs) adhesion and proliferation with fibroblastoid morphology. Addit... More
In an attempt to enhance endothelial cell capture and promote the vascularization of engineered tissue, we biosynthesized and characterized the recombinant fusion protein consisting of human vascular endothelial-cadherin extracellular domain and immunoglobulin IgG Fc region (hVE-cad-Fc) to serve as a bioartificial extracellular matrix. The hVE-cad-Fc protein naturally formed homodimers and was used to construct hVE-cad-Fc matrix by stably adsorbing on polystyrene plates. Atomic force microscop assay showed uniform hVE-cad-Fc distribution with nanorod topography. The hVE-cad-Fc matrix markedly promoted human umbilical vein endothelial cells (HUVECs) adhesion and proliferation with fibroblastoid morphology. Additionally, the hVE-cad-Fc matrix improved HUVECs migration, vWF expression, and NO release, which are closely related to vascularization. Furthermore, the hVE-cad-Fc matrix activated endogenous VE-cadherin/β-catenin proteins and effectively triggered the intracellular signals such as F-actin stress fiber, p-FAK, AKT, and Bcl-2. Taken together, hVE-cad-Fc could be a promising bioartificial matrix to promote vascularization in tissue engineering.