In this protocol, we describe a simple microscopy-based method to assess the interaction of a microtubule-associated protein (MAP) with microtubules. The interaction between MAP and microtubules is typically assessed by a co-sedimentation assay, which measures the amount of MAP that co-pellets with microtubules by centrifugation, followed by SDS-PAGE analysis of the supernatant and pellet fractions. However, MAPs that form large oligomers tend to pellet on their own during the centrifugation step, making it difficult to assess co-sedimentation. Here we describe a microscopy-based assay that measures microtubule binding by direct visualization using fluorescently-labeled MAP, solving the limitations of the co-se... More
In this protocol, we describe a simple microscopy-based method to assess the interaction of a microtubule-associated protein (MAP) with microtubules. The interaction between MAP and microtubules is typically assessed by a co-sedimentation assay, which measures the amount of MAP that co-pellets with microtubules by centrifugation, followed by SDS-PAGE analysis of the supernatant and pellet fractions. However, MAPs that form large oligomers tend to pellet on their own during the centrifugation step, making it difficult to assess co-sedimentation. Here we describe a microscopy-based assay that measures microtubule binding by direct visualization using fluorescently-labeled MAP, solving the limitations of the co-sedimentation assay. Additionally, we recently reported quantification of microtubule bundling by measuring the thickness of individual microtubule structures observed in the microscopy-based assay, making the protocol more advantageous than the traditional microtubule co-pelleting assay.