Medicinal bioinorganic chemistry is a thriving field of drug research for cancer treatment. Transition metal complexes coordinated to essential biological scaffolds represent a highly promising class of compounds for design of novel target-specific therapeutics. We report here the biological evaluation of a novel Isatin-Schiff base derivative and its Cu(II) complex in several tumor cell lines by assessing their effects on cellular metabolism, real-time cell proliferation and induction of apoptosis. Further, the impact of compounds on the p53 protein and expression of its target genes, including , , and was evaluated. Results obtained in this study provide further evidence in support of our prior data... More
Medicinal bioinorganic chemistry is a thriving field of drug research for cancer treatment. Transition metal complexes coordinated to essential biological scaffolds represent a highly promising class of compounds for design of novel target-specific therapeutics. We report here the biological evaluation of a novel Isatin-Schiff base derivative and its Cu(II) complex in several tumor cell lines by assessing their effects on cellular metabolism, real-time cell proliferation and induction of apoptosis. Further, the impact of compounds on the p53 protein and expression of its target genes, including , , and was evaluated. Results obtained in this study provide further evidence in support of our prior data suggesting the p53-mediated mechanism of action for Isatin-Schiff base derivatives and their complexes and also shed light on potential use of these compounds for stimulation of apoptosis in breast cancer cells via activation of the pro-apoptotic gene.