至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.
文献搜索
Structural Basis for Potent Neutralization of Betacoronaviruses by Single-domain Camelid Antibodies
biorxiv.2020-03;
Daniel Wrapp, Dorien De Vlieger, Kizzmekia S. Corbett, Gretel M. Torres, Wander Van Breedam, Kenny Roose, Loes van Schie, VIB-CMB COVID-19 Response Team, Markus Hoffmann, Stefan Pöhlmann, Barney S. Graham, Nico Callewaert, Bert Schepens, Xavier Saelens, Jason S. McLellan
Binding was detected by incubating the plates sequentially with either mouse anti-Histidine Tag antibody (MCA1396, Abd Serotec) followed horseradish peroxidase (HRP)-linked anti-mouse IgG (1/2000, NXA931, GE Healthcare) or Streptavidin-HRP (554066, BD Biosciences) or by an HRP-linked rabbit anti-camelid VHH monoclonal antibody (A01861-200, GenScript).
The pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV-1) and COVID-19 coronavirus (SARS-CoV-2) have all emerged into the human population with devastating consequences. These viruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics to combat these highly pathogenic coronaviruses. Here, we describe the isolation and characterization of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs are cap... More
The pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV-1) and COVID-19 coronavirus (SARS-CoV-2) have all emerged into the human population with devastating consequences. These viruses make use of a large envelope protein called spike (S) to engage host cell receptors and catalyze membrane fusion. Because of the vital role that these S proteins play, they represent a vulnerable target for the development of therapeutics to combat these highly pathogenic coronaviruses. Here, we describe the isolation and characterization of single-domain antibodies (VHHs) from a llama immunized with prefusion-stabilized coronavirus spikes. These VHHs are capable of potently neutralizing MERS-CoV or SARS-CoV-1 S pseudotyped viruses. The crystal structures of these VHHs bound to their respective viral targets reveal two distinct epitopes, but both VHHs block receptor binding. We also show cross-reactivity between the SARS-CoV-1 S-directed VHH and SARS-CoV-2 S, and demonstrate that this cross-reactive VHH is capable of neutralizing SARS-CoV-2 S pseudotyped viruses as a bivalent human IgG Fc-fusion. These data provide a molecular basis for the neutralization of pathogenic betacoronaviruses by VHHs and suggest that these molecules may serve as useful therapeutics during coronavirus outbreaks.